Noncommutative Hypergeometric and Basic Hypergeometric Equations

نویسندگان

  • ALESSANDRO CONFLITTI
  • MICHAEL J. SCHLOSSER
  • M. J. SCHLOSSER
چکیده

Recently, J. A. Tirao [Proc. Nat. Acad. Sci. 100 (14) (2003), 8138–8141] considered a matrix-valued analogue of the 2F1 Gauß hypergeometric function and showed that it is the unique solution of a matrix-valued hypergeometric equation analytic at z = 0 with value I, the identity matrix, at z = 0. We give an independent proof of Tirao’s result, extended to the more general setting of hypergeometric functions over an abstract unital Banach algebra. We provide a similar (but more complicated-looking) result for a second type of noncommutative 2F1 Gauß hypergeometric function. We further give q-analogues for both types of noncommutative hypergeometric equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Extensions of Ramanujan’s 1ψ1 Summation ∗

Using functional equations, we derive noncommutative extensions of Ramanujan's 1 ψ 1 summation. 1. Introduction. Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have been the subject of recent study, see e.g. the papers by Duval and Ovsienko [DO], Grünbaum [G], Tirao [T], and some of the references mentioned therein. Of course, t...

متن کامل

Summation Formulae for Noncommutative Hypergeometric Series

Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have recently been studied by a number of researchers including (in alphabetical order) Durán, Duval, Grünbaum, Iliev, Ovsienko, Pacharoni, Tirao, and others. See [3, 6, 8, 9, 10, 11, 12, 16] for some selected papers. The subject of hypergeometric series involving matrices is closel...

متن کامل

Galois groups of the basic hypergeometric equations 1 by

In this paper we compute the Galois groups of basic hypergeometric equations. In this paper q is a complex number such that 0 < |q| < 1. 1 Basic hypergeometric series and equations The theory of hypergeometric functions and equations dates back at least as far as Gauss. It has long been and is still an integral part of the mathematical literature. In particular, the Galois theory of (generalize...

متن کامل

Galois groups of the basic hypergeometric equations 1 by Julien Roques 20 th of August 2007

In this paper we compute the Galois groups of basic hypergeometric equations. In this paper q is a complex number such that 0 < |q| < 1. 1 Basic hypergeometric series and equations The theory of hypergeometric functions and equations dates back at least as far as Gauss. It has long been and is still an integral part of the mathematical literature. In particular, the Galois theory of (generalize...

متن کامل

A Noncommutative Weight-dependent Generalization of the Binomial Theorem

A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight function depending on two integers. For two special cases of the weight function, in both cases restricting it to depend only on a single integer, the noncommutative binomial theorem involves an expan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011